Search results for "Vector measure"

showing 6 items of 6 documents

Isometric factorization of vector measures and applications to spaces of integrable functions

2022

Let $X$ be a Banach space, $\Sigma$ be a $\sigma$-algebra, and $m:\Sigma\to X$ be a (countably additive) vector measure. It is a well known consequence of the Davis-Figiel-Johnson-Pelczýnski factorization procedure that there exist a reflexive Banach space $Y$, a vector measure $\tilde{m}:\Sigma \to Y$ and an injective operator $J:Y \to X$ such that $m$ factors as $m=J\circ \tilde{m}$. We elaborate some theory of factoring vector measures and their integration operators with the help of the isometric version of the Davis-Figiel-Johnson-Pelczýnski factorization procedure. Along this way, we sharpen a result of Okada and Ricker that if the integration operator on $L_1(m)$ is weakly compact, t…

Mathematics::Functional AnalysisPure mathematicsIntegrable systemApplied MathematicsBanach spaceSigmaVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410Injective functionOperator (computer programming)Vector measureFactorizationEquivalence (measure theory)AnalysisMathematics
researchProduct

The support localization property of the strongly embedded subspaces of banach function spaces

2015

[EN] Motivated by the well known Kadec-Pelczynski disjointifcation theorem, we undertake an analysis of the supports of non-zero functions in strongly embedded subspaces of Banach functions spaces. The main aim is to isolate those properties that bring additional information on strongly embedded subspaces. This is the case of the support localization property, which is a necessary condition fulflled by all strongly embedded subspaces. Several examples that involve Rademacher functions, the Volterra operator, Lorentz spaces or Orlicz spaces are provided.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsVolterra operatorFunctional analysisDisjoint sequenceStrongly embedded subspaceFunction spaceGeneral MathematicsLorentz transformationVector measure integrationBanach function spaceLinear subspacesymbols.namesakesymbolsInterpolation spaceBirnbaum–Orlicz spaceLp spaceMATEMATICA APLICADAMathematics
researchProduct

Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions

2016

[EN] We show a Dvoretzky-Rogers type theorem for the adapted version of the q-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector value…

Article Subject0211 other engineering and technologies02 engineering and technologyTopologyComputer Science::Digital Libraries01 natural sciencesTopological vector spaceVector measureLocally convex topological vector spaceUnconditional convergenceIntegrable function0101 mathematicsLp spaceCompact convergenceMathematicsPointwise convergence021103 operations researchWeak convergenceTopological duallcsh:Mathematics010102 general mathematicslcsh:QA1-939AlgebraComputer Science::Mathematical SoftwareMATEMATICA APLICADAModes of convergenceAnalysis
researchProduct

p-VARIATION OF VECTOR MEASURES WITH RESPECT TO BILINEAR MAPS

2008

AbstractWe introduce the spaces Vℬp(X) (respectively 𝒱ℬp(X)) of the vector measures ℱ:Σ→X of bounded (p,ℬ)-variation (respectively of bounded (p,ℬ)-semivariation) with respect to a bounded bilinear map ℬ:X×Y →Z and show that the spaces Lℬp(X) consisting of functions which are p-integrable with respect to ℬ, defined in by Blasco and Calabuig [‘Vector-valued functions integrable with respect to bilinear maps’, Taiwanese Math. J. to appear], are isometrically embedded in Vℬp(X). We characterize 𝒱ℬp(X) in terms of bilinear maps from Lp′×Y into Z and Vℬp(X) as a subspace of operators from Lp′(Z*) into Y*. Also we define the notion of cone absolutely summing bilinear maps in order to describe t…

Vector integrationDiscrete mathematicsVector measureGeneral MathematicsBounded functionBilinear interpolationBilinear formBilinear mapP-variationSubspace topologyMathematicsBulletin of the Australian Mathematical Society
researchProduct

A poincar�-bendixson theorem for analytic families of vector fields

1995

We provide a characterization of the limit periodic sets for analytic families of vector fields under the hypothesis that the first jet is non-vanishing at any singular point. Also, applying the family desingularization method, we reduce the complexity of some of these sets.

Pure mathematicsVector measureSolenoidal vector fieldJet (mathematics)General MathematicsMathematical analysisVector fieldSingular point of a curveDirection vectorPoincaré–Bendixson theoremMathematicsVector potentialBoletim da Sociedade Brasileira de Matem�tica
researchProduct

MR2376860 (2009e:28048) Khurana, Surjit Singh Weak compactness of vector measures on topological spaces. Publ. Math. Debrecen 72 (2008), no. 1-2, 69-…

2009

Weak compactness of vector measures on topological spaces.

Weak compactness vector measures.
researchProduct