Search results for "Vector measure"
showing 6 items of 6 documents
Isometric factorization of vector measures and applications to spaces of integrable functions
2022
Let $X$ be a Banach space, $\Sigma$ be a $\sigma$-algebra, and $m:\Sigma\to X$ be a (countably additive) vector measure. It is a well known consequence of the Davis-Figiel-Johnson-Pelczýnski factorization procedure that there exist a reflexive Banach space $Y$, a vector measure $\tilde{m}:\Sigma \to Y$ and an injective operator $J:Y \to X$ such that $m$ factors as $m=J\circ \tilde{m}$. We elaborate some theory of factoring vector measures and their integration operators with the help of the isometric version of the Davis-Figiel-Johnson-Pelczýnski factorization procedure. Along this way, we sharpen a result of Okada and Ricker that if the integration operator on $L_1(m)$ is weakly compact, t…
The support localization property of the strongly embedded subspaces of banach function spaces
2015
[EN] Motivated by the well known Kadec-Pelczynski disjointifcation theorem, we undertake an analysis of the supports of non-zero functions in strongly embedded subspaces of Banach functions spaces. The main aim is to isolate those properties that bring additional information on strongly embedded subspaces. This is the case of the support localization property, which is a necessary condition fulflled by all strongly embedded subspaces. Several examples that involve Rademacher functions, the Volterra operator, Lorentz spaces or Orlicz spaces are provided.
Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions
2016
[EN] We show a Dvoretzky-Rogers type theorem for the adapted version of the q-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector value…
p-VARIATION OF VECTOR MEASURES WITH RESPECT TO BILINEAR MAPS
2008
AbstractWe introduce the spaces Vℬp(X) (respectively 𝒱ℬp(X)) of the vector measures ℱ:Σ→X of bounded (p,ℬ)-variation (respectively of bounded (p,ℬ)-semivariation) with respect to a bounded bilinear map ℬ:X×Y →Z and show that the spaces Lℬp(X) consisting of functions which are p-integrable with respect to ℬ, defined in by Blasco and Calabuig [‘Vector-valued functions integrable with respect to bilinear maps’, Taiwanese Math. J. to appear], are isometrically embedded in Vℬp(X). We characterize 𝒱ℬp(X) in terms of bilinear maps from Lp′×Y into Z and Vℬp(X) as a subspace of operators from Lp′(Z*) into Y*. Also we define the notion of cone absolutely summing bilinear maps in order to describe t…
A poincar�-bendixson theorem for analytic families of vector fields
1995
We provide a characterization of the limit periodic sets for analytic families of vector fields under the hypothesis that the first jet is non-vanishing at any singular point. Also, applying the family desingularization method, we reduce the complexity of some of these sets.
MR2376860 (2009e:28048) Khurana, Surjit Singh Weak compactness of vector measures on topological spaces. Publ. Math. Debrecen 72 (2008), no. 1-2, 69-…
2009
Weak compactness of vector measures on topological spaces.